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1.Abstract  
DLA(Diffusion Limited Aggregation) and DBM(The Dielectric Breakdown Model) are two commonly 
used non-equilibrium growth models. DLA is a classic model for non-equilibrium growth, used to 
study natural phenomena such as crystal growth, fluid dynamics, and dust aggregation. On the other 
hand, DBM is a model for dielectric breakdown phenomena, used to predict breakdown behavior in 
materials by considering physical processes such as the density evolution of ionized electrons and 
electron holes. Despite being applied in different fields, both models share the common feature of 
non-equilibrium growth, where the evolution of physical processes does not satisfy thermodynamic 
equilibrium conditions. 

In this article ,I simulated 2D DLA and DBM patterns, and discussed image's fractal and dimensional 
features.
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2.Method  
2.1 DLA  
The DLA model is one of the classic models for describing non-equilibrium growth, and its basic idea 
is that particles with random motion deposit on an adsorption center to form a dense shell in an 
initial state. New particles diffuse and move along the surface of the shell, and if they collide with a 
certain point of the original shell, they will stop and be adsorbed, continuing to form the next layer of 
the shell. The DLA model is commonly used to study non-equilibrium growth phenomena in nature, 
such as crystal growth, fluid dynamics, and dust aggregation.

Simulation Rules  

A 2D square lattice is taken, and a particle is placed at the center of the lattice as the seed for growth. 
Another particle is released from a circular boundary far enough from the origin of the lattice and 
allowed to perform a random walk. The particle will eventually collide with the nearest neighbor 
position of the seed, at which point the particle will stick to the seed and stop moving. If the particle 
reaches the boundary of the lattice, it is considered a useless trajectory and discarded, and a new 
particle is generated. Therefore, useful particles that stick to the seed form a growing aggregate 
cluster.
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Definitions:  

The maximum distance of the current aggregate cluster is d.

The cluster radius is .

The edge length of the 2D square matrix is .

The particle stickiness is .

The radius of the generating circle is .

Algorithm:  

1. Randomly generate a particle, .

If , generate a particle randomly on a circle with radius .

Otherwise, generate a particle randomly on the boundary of the square lattice.

2. Let particle  perform a random walk and check if there are any aggregate particles in the eight 
surrounding points.

If the particle collides with the boundary of the lattice, return to step 1 and generate a new 
particle.

If there are aggregate particles nearby, determine whether to join the cluster or continue to 
perform a random walk based on the stickiness of .

3. When the particle joins the cluster, update the cluster radius, .

4. Return to step 1, or end the program when the cluster is large enough.

2.2 DBM  
The DBM model is a model that describes the dielectric breakdown phenomenon. When an external 
electric field reaches a certain strength in a dielectric material, the electrons inside the material are 
subjected to a strong enough electric field force and collide with ionized electrons, resulting in local 
breakdown. The DBM model establishes the evolution equation of the ionized electron and electron 
hole densities in the dielectric material by considering physical processes such as free electrons, 
positive ions, and electron holes in the material, which predicts the breakdown behavior in the 
material. The DBM model is commonly used in the design of electrical equipment, optoelectronic 
devices, semiconductor materials, and so on.

Simulation Rules  

The process described by this model involves a constant potential  at the central point of a 
dielectric material (insulator), which continuously breaks down the surrounding medium, forming a 
growing conductor.

The growth rate  of breakdown in the medium is a function of the gradient of potential , i.e., 
, where  is normal to the interface. The potential throughout the medium follows 

Laplace's equation, and the boundary conditions are that the potential is  on the occupied grid and 
0 at a distance. The growth mode is to occupy an empty grid on the boundary with a probability equal 
to the growth rate. Mathematically, this can be described as:
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The probability is summed over all unoccupied grids on the boundary, and a grid is selected for 
occupation based on this probability. After occupying a new grid, the boundary conditions change, 
and the potential distribution, growth rate, and selection probability need to be recalculated.

Definitions  

Grid state: EMPTY  represents a free point, CANDIDATE  represents a candidate point, and 
FILLED  represents a grown point.

Particle set _particle_set : stores a set of generated points, all of which have the state 

FILLED .

Candidate set _candidate_set : stores a set of candidate points to be grown, all of which have 

the state CANDIDATE .

Algorithm  

1. Using formula (1) and (2), randomly select a candidate point x from _candidate_set  based on 

its growth rate.

2. Add the candidate point x to _particle_set , change its state from CANDIDATE  to FILLED , and 

set its potential to .

3. Add all surrounding EMPTY  points of x to _candidate_set , changing their state from EMPTY  to 

CANDIDATE .

4. Remove x from _candidate_set .

5. Recalculate the potential of particles in _candidate_set  based on Laplace's equation and the 

new boundary conditions.

6. Go back to step 1, or terminate the program when the cluster is large enough.

Note: In actual code implementation, it is not necessary to label points with states. The state can be 
determined based on whether a point is in _particle_set  or _candidate_set .

Numerical Solution Method for Laplace's Equation:

The Laplace equation can be expressed as

For numerical solution, it can be written as

In reality, the potential values of the surrounding points are not known, only the potential values on 
the boundaries are known. Therefore, particles at position (i, j) are allowed to randomly walk until 
they encounter the boundary, at which point the potential value on the boundary, denoted as , 
is recorded. After multiple random walks, the average potential value is taken as the potential value at 
point (i, j):
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2.3 DBM_FAST  

Background  

For actual dielectric breakdown models, the main bottleneck of the algorithm is to re-calculate the 
potential size of all candidate points after each iteration. When the boundary range N is large 
enough to grow n points, the time complexity required is  1. For a grid point with a side 
length of , the time will be very slow, and it takes about 18 minutes to grow n=300 points.

Therefore, based on the idea of a paper about fast Laplace growth simulation 1, I propose the 
following improvements.

Idea  

Each "grown" point is insulated, that is, the charge is not redistributed but fixed at the lattice point. 
For the potential of candidate points, it is a linear superposition of the electric potential of these 
FILLED  growth points.

Consider that the center potential of the boundary is 1 and the potential at infinity is 0. Then, each 
point charge can be treated as a positive charge, and the potential is

where the length of each small lattice point is , and the radius of the point charge is .

Therefore, for the CANDIDATE  point , its potential is the superposition of the electric charge  of all 
FILLED  points:

The growth rate should also be correspondingly corrected. Let the maximum potential of the 
candidate  be , and the minimum potential be :

The reason why it can be accelerated is that each time it is iterated, the previous potential can be used 
for iteration, that is:

 is the distance between the new position of the FILLED  point and each CANDIDATE  point.

Algorithm  

1. According to formula (4), the growth rate of the candidate point is a probability. After 
normalization, randomly select a candidate point x from the _candidate_set .

2. Add candidate point x to _particle_set , and its state changes from CANDIDATE  to FILLED .

3. Remove x from _candidate_set .
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Figure 1:Code Framework




Figure 2: Sandbox Method

4. Iterate the potential in _candidate_set  according to formula (5).

5. Add EMPTY  points around x to _candidate_set , change the state from EMPTY  to CANDIDATE , 

and calculate the potential of the new candidate point according to formula (3). In one iteration, 
no more than 5 points like this.

6. Return to step 1; or when the cluster is large enough, the program ends.

2.4 Code Framework  
 Due to the need for efficiency in the code involving a large number of operations to check whether 
points are in a set, we have chosen set  as the primary data structure. Its operations of searching 

with in , adding with add , and removing with remove  are all with a time complexity of .

 Since the three growth models have similar ideas, a class inheritance framework is designed.

 

 The lower-level classes inherit the interface of the upper-level classes, reducing redundant code.

2.5 Fractal and Dimensional Features  

Sandbox Method  

Using the Sandbox method to calculate the fractal digits, the formula is

N is the number of pixels in the square box, r is the side length of the box, and C is other constants. 
The statistical process is shown in the figure below
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Increase the side length of the box according to the power of , count the number of internal 
points, and get a logarithmic coordinate graph, and calculate the slope to be the number of fractal 
digits D

Density-Density Correlation Function Method  

The density-density correlation function of fractal patterns in the plane is defined as follows:

where  is the density function of the pattern, which is 1 at the position of the pattern and 0 
elsewhere; N is the total number of pixels. The geometric meaning of C(r) is the ratio of the number of 
overlapping pixels between the original pattern and the pattern translated by r to the total number of 
pixels, which represents the probability of finding another pixel at a distance r. In actual calculations, 
the average is taken over N different values of r', as well as over different directions and lengths of r 
with the same length.

In the special case where r' is fixed and taken as the center of the pattern (i.e., r' = 0), we have:

To determine the fractal dimension, we need to count the number of overlapping pixels within a circle 
with radius increasing by a power of , plot the results on a logarithmic scale, and obtain the slope 

.

When integrating C(r) within the turning radius R, the integral value is proportional to the total 
number of pixels in the pattern when R is large enough.

"dim" refers to the Euclidean dimension of the space, which is 2 in this figure; "D" refers to the fractal 
dimension.
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Figure 3. Comparison of DLA with different stickiness values (3000 points).


 


3. Experiment  
3.1 DLA  
As shown in the following figure, DLA models were considered with viscosities of 0.01, 0.1, 0.5, and 1, 
respectively, and 3000 points were grown.

 

DLA Analysis：	  

As shown in the figure, as the viscosity increases, the image of DLA growth becomes increasingly 
sparse. When the viscosity is 1, particles are likely to collide with an external dendrite before entering 
a trench, resulting in a shielding effect and preventing particles from entering the trench. This 
structure reflects the characteristics of the growth process, where growth occurs faster at the tips, 
leading to the formation of branches that extend outward, and slower in flatter areas, resulting in a 
loose structure with gaps in the trenches. This morphology only appears when particles adhere to the 
cluster without any preferred direction.

3.2 DBM  
As shown in the following figure, DBM models were considered with eta values of 0, 3, 6, and 10, 
respectively, and only 300 points were grown due to limited code efficiency.
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Figure 4: Comparison of DBM with different values of eta (300 points).


 



 


Figure 5: Comparison of DBM FAST algorithm with different eta values (3000 points).

 

Analysis of DBM:  

From the images, it can be observed that as  increases and the growth rate 

chooses branches based on probability, the number of branches gradually decreases, and the image 
converges from a two-dimensional uniform plane to a one-dimensional image, just like from a 
spherical lightning to a linear lightning.

This phenomenon can be easily explained by analysis. As  increases, for larger potential energy 
gradients 

 their weight becomes more prominent, leading to a greater probability of choosing the direction with 
a greater change in gradient. Therefore, it is easier to present a linear image with fewer branches.

3.3 DBM_FAST  
After improving the algorithm, DBM models with  values of 0, 3, 6, and 10 were obtained, and 3000 
points were grown to produce the following images.
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Figure 6: Comparison of DBM FAST algorithm with different eta values (300 points).




Figure7: Time Comparison

DBM FAST Analysis:  

As can be seen from the images, with the increase of , the image also gradually converges from a 
two-dimensional plane to a one-dimensional line, consistent with the trend of DBM. This indicates 
that our improved algorithm has not changed the essential difference of the image and greatly 
accelerated the speed of the algorithm.

Comparison with DBM  

The following image shows the DBM FAST algorithm with 300 points. They can be better compared 
with the DBM images(Figure 4).

 

Compared to the DBM image (Figure 4), the two are almost identical.

And the computation time has been significantly reduced.

 

Almost 1000 times faster.

Compared with DLA  

Under certain parameter selections, both exhibit tree-like growth.

It can be seen that the DLA algorithm always maintains a larger number of branches and does not 
gradually converge to one dimension with changes in parameters. The DBM algorithm, as  changes, 
will make the correlation between points more obvious, converging to one dimension and no longer 
exhibiting branching phenomena.

3.4 Fractal and Dimensional Features Result  
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Figure 8: Sandbox Result




Figure 9: Density Result

Sandbox Method  

	 The experimental results are shown in the following figure

 

The experimentally computed slope of the image is

which is the fractal dimension.

The fractal dimension result is in the range of 1.6 to 1.7, which is in good agreement with the theory.

2.3 Density-Density Correlation Function Method  
The experimental result is shown in the following figure.

 

	 The slope of the image and the fractal dimension are：

	 The fractal dimension result is in the range of 1.6 to 1.7, which is in good agreement with the 
theory.

4. Summary  
In this experiment, DLA and DBM models were compared and their differences were analyzed.

A method to accelerate the Laplace numerical algorithm was proposed and its effectiveness was 
verified through experiments.
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During the experiment, a good data structure pattern, "set", was adopted to improve the 
program speed.

The dimension of DLA was calculated using the sandbox method and the density-density 
correlation function method. The dimensions obtained by the two methods were both within the 
range of 1.6 to 1.7, which is close to the theoretical value
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