
Poisson Image Editing
Author: Runze Wang

Source code: GitHub repository.

1 Abstract
Implementing image boundary determination based on the scan-line algorithm. And using a general
interpolation mechanism based on solving the Poisson equation allows for seamless import of
opaque and transparent source image regions into the target region.

Keywords: Interactive image editing, scanning line algorithm, Poisson equation

2 Target
As shown in the figure, is the image to be blended with the domain defined in , and is the
background image with the domain defined in . The problem to be solved is to allow them to blend
naturally. The so-called natural blending means that, while maintaining the original internal gradients
of the image (minimizing the difference in gradients between the new and original images), the
boundary values of the pasted image are the same as those of the new background image, in order to
achieve a seamless paste effect.

3 Experiment
3.1 Polygon scan conversion algorithm
To better determine the boundary and the domain to be solved, it is necessary to obtain a
polygon interior mask through the scanline algorithm.

The sorted edge table method defines special data structures for the edge table ET and the active edge
table AET, avoiding the need for intersection calculations.

af://n130
https://github.com/Rainzor/PoissonImageEditing
af://n135
af://n138
af://n142
af://n143

Active Edge Table (AET）

This table stores the edges that intersect with the current scanline. Before leaving one scanline and
entering the next one, the edges in the table that do not intersect with the next scanline are removed,
and the edges that intersect with the next scanline but are not in the table are added to the table. The
edges in the active edge table (AET) are always sorted in increasing order of their x-coordinates,
because when filling the polygon, it is necessary to determine whether the algorithm is entering or
exiting the interior of the polygon based on this order.	

ymax: The y-coordinate value of the highest scanline that the edge intersects.

x: The coordinate of the intersection point between the current scanline and the edge.

Δx:The increment of x from the current scanline to the next scanline.

next: A pointer to the next edge.

Edge Table (ET)

(1) Before filling a polygon, it is necessary to first create an edge table to store information about the
polygon's edges. The edge table is a type of adjacency list. The entries in the edge table (ET) are
sorted in increasing order of their y-coordinates, and the "bucket" under each entry is sorted in
increasing order of their x-coordinates. The content of each item in the "bucket" is:

The maximum y-coordinate (ymax) of the edge's other endpoint.

The x-coordinate (xmin) of the endpoint corresponding to the smaller y-coordinate.

The reciprocal of the slope (1/m).

A pointer (next) to the next edge.

(2) Note: When creating the edge table, if a vertex appears to be a local maximum or minimum (e.g.,
point B in the figure below), it is treated as two separate points; otherwise, it is treated as a single
point. In practice, local maximum or minimum vertices do not need to be processed, while other
vertices should be moved inward along the edge direction by one unit.

The reason is as follows: For example, in the figure below, for point B, no extra processing is needed
because when the scanline is at y=9, both e2 and e3 will be included in the AET. That is, point B will
appear twice in the current AET, and when filling, it will enter and exit at that point, avoiding any filling
errors. However, for point A, if it is not moved inward, when the scanline is at y=3, both e1 and e2 will
be included in the AET. Therefore, point A will also appear twice in the current AET, resulting in three
points in the AET and causing an error in the filling of the polygon interior after the row y=3. In
addition, the AET should always contain an even number of points. After moving inward, point A will
only appear once in the current AET, and there will be an even number of points, resulting in correct
filling.

af://n146
af://n157

Figure :Active Edge Table

（3）The established ET is shown below:

Note that e2 and e5 have been indented here, while e1, e3, and e4 have not.

Scanning process

af://n178

Fill algorithm

3.2 Image Fusion Algorithm

Mathematical Formulation

Mathematically, image fusion can be formulated as the solution to the optimization problem of
embedding the new image into a new background , given the original image ,
as follows:

By using the variational method and applying the Euler-Lagrange equation, the problem can be
transformed into a Poisson equation with Dirichlet boundary conditions:

If we let and , then the problem can be transformed into solving the
boundary problem of Laplace's equation:

Here, and are known boundary conditions, while is the function to be solved.

void Polygonfill(EdgeTable ET, COLORREF color)

{

 y = the minimum value of y coordinates among all the registered items in the

edge table (ET).

 Initialize the active edge table (AET) as an empty table.

 while (there are still scan lines in the ET that have not been processed) //

process each scan line in the ET

 {

 3.1 Merge all the "buckets" corresponding to the y coordinate in the ET into the

AET table,

 sort the buckets in the AET table by increasing x coordinate.

 3.2 On the scan line y, perform fill using the color according to the x

coordinates provided by the AET table.

 3.3 Clear all the items in the AET table that have y = ymax.

 3.4 For the remaining items in the AET table, replace x with x + 1/m.

 3.5 Since the previous step may have disrupted the increasing order of x

coordinates in the AET table,

 re-sort the table by x coordinate. // for non-simple polygons

 3.6 Increment y by 1 and move on to the next scan line.

 }

}

af://n182
af://n184
af://n185

Numerical Equation

To perform numerical solutions, needs to be discretized using the finite difference method.
Assuming a pixel spacing of for any point in region with corresponding value
denoted as , the equation is as follows:

For the sake of simplicity, let denote the four-connected neighborhood of each pixel in . Let
 denote a pair of pixels such that , i.e., .

With this, we can obtain the numerical equation solution.

Matrix Form Equation

Set , so that:

If we take a rectangular region as an example, let

In this case, there are a total of unknowns in equations (5) and (6), and a total
of constraint conditions. These conditions are linearly independent, so the
system is solvable.

For a more general boundary, the algorithm can be described as follows:

1. Initialization: Let there be a total of pixel points in . Initialize a sparse
coefficient matrix coe_sparse_mat=0 and an N-dimensional unknown vector vec . Assume that

the region has pixel points and begin from the starting point.

2. Traverse each pixel point in the region .

3. If , then index(i,j)=i*n+j

coe_sparse_mat[index(i,j)][index(i,j)]= 4

If a surrounding point , then coe_sparse_mat(q)=-1

If a surrounding point , then vec[index(q)]= [index(q)]

4. Solve the equation coe_sparse_mat * x = vec , where x(index(i,j)) = u(i,j) .

// Step 1: Initialization

N = number of pixel points in D

coe_sparse_mat = sparse N x N matrix

vec = N-dimensional vector

n = number of pixels along x-axis in S

m = number of pixels along y-axis in S

af://n193
af://n198

Left:girl in the pool.Right: bear in the river

The final solution is , and the pixel value of the resulting image is:

Where is the pixel value of the original image, and is the value just obtained after
solving.

4 Result
There is a girl happily swimming in the swimming pool, while a bear is swimming in another river.
They are in different bodies of water, as shown in the following pictures.

// Step 2: Traverse pixel points in S

for i = 0 to m:

 for j = 0 to n:

 // Step 3: Check if pixel point is in D

 if (i, j) is in D:

 index = i * n + j

 coe_sparse_mat[index][index] = 4

 // Check surrounding points in Interior

 for each surrounding point q:

 if q is in D:

 coe_sparse_mat[index][index(q)] = -1

 elif q is in E://if q in edge

 vec[index(q)] = phi[index(q)]

// Step 4: Solve equation coe_sparse_mat * x = vec

x = solve(coe_sparse_mat, vec)

af://n227

Simple Paste

Poisson Paste

Now we put these two unlucky guys into the ocean. If we simply copy and paste, the following result
would occur:

However, with the help of our Poisson fusion image algorithm, they can be more naturally integrated
into the ocean：

As you can see, the images match the surrounding environment more naturally after using our
algorithm, but there is still room for improvement!

5. Reference
Polygon Scan Conversion Algorithm

Poisson Image Editing Algorithm

Code Framework

af://n237
https://ezeli.github.io/2019/08/26/%E5%9B%9B%E3%80%81%E5%A4%9A%E8%BE%B9%E5%BD%A2%E7%9A%84%E6%89%AB%E6%8F%8F%E8%BD%AC%E6%8D%A2%E7%AE%97%E6%B3%95%E5%8E%9F%E7%90%86%E5%92%8C%E5%AE%9E%E8%B7%B5/
https://www.cs.jhu.edu/~misha/Fall07/Papers/Perez03.pdf
https://github.com/Ubpa/USTC_CG/tree/master/Homeworks/3_PoissonImageEditing

	Poisson Image Editing
	1 Abstract
	2 Target
	3 Experiment
	3.1 Polygon scan conversion algorithm
	Active Edge Table (AET）
	Edge Table (ET)
	Scanning process
	Fill algorithm

	3.2 Image Fusion Algorithm
	Mathematical Formulation
	Numerical Equation
	Matrix Form Equation

	4 Result
	5. Reference

